Improvement of dye-sensitized solar cells' performance through introducing suitable heterocyclic groups to triarylamine dyes.
نویسندگان
چکیده
Dye-sensitized solar cells are currently under intense academic and industrial investigation, owing to their great potential to serve as a low-cost alternative to existing photovoltaic technologies. This paper puts forward a method, which adopts heterocyclic substituted triarylamine units as electronic donor moieties, to design triarylamine dyes for efficient dye-sensitized solar cells. Three novel triarylamine dyes named TTC101, TTC102 and TTC103, were synthesized economically through modification of the structure of a simple triarylamine dye (TC105) using three kinds of heterocyclic groups (4-pyridyl, 2-thienyl and 1-pyrazolyl). The crystal structure of TTC103 indicates that the heterocyclic groups would partly delocalize the positive charge after photooxidation. The overall solar-to-electrical energy conversion efficiencies (η) of TTC102 and TTC103 are 4.92% and 5.21% respectively under AM1.5G irradiation, reaching ∼82.3% and ∼77.7% of a N719-based reference cell under the same conditions. Besides, the energy conversion efficiencies (η) of TTC102 and TTC103 are 1.29 and 1.37 times the efficiency of TC105 respectively. All of the results above demonstrate that photovoltaic performance can be improved by introducing suitable heterocyclic groups to triarylamine dyes. A series of properties were investigated to explain the results, with a special emphasis on the geometric structures, energetics, and charge transfer processes at the dye/titania/electrolyte interface.
منابع مشابه
Application of azo dye as sensitizer in dye-sensitized solar cells
An azo dye used as photosensitizers in Dye-sensitized solar cells DSSCs. Azo dyes economically superior to organometallic dyes because they are color variation and cheap. The spectrophotometric evaluation of an azo dye in solution and on a TiO2 substrate show that the dye form J-aggregation on the nanostructured TiO2 substrate. Oxidation potential measurements for used azo dyes ensured an energ...
متن کاملNatural dyes extracted from black carrot and bramble for Dye-Sensitized Solar Cells
Two different natural dyes containing anthocyanin extracted from black carrot and bramble from Iran. Spectrophotometric evaluations of the natural dyes in solution and on a TiO2 substrate were carried out in order to assess changes in the status of the natural dyes. The results show that the natural dyes indicate buthochromic shift on the TiO2 substrates. The chemical adsorption of natural dyes...
متن کاملEfficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells
The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we r...
متن کاملSynthesis and Application of Two Organic Dyes for Dye-Sensitized Solar Cells
In the present study, two new organic dyes based on indigo were prepared and used as sensitizers in dye-sensitized solar cells. To this end, indoxyl was utilized as the electron donor and cyanoacrylic acid as the electron acceptor anchoring groups. These dyes together with their corresponding intermediates were purified and characterized by FTIR, 1HNMR, 13CNMR, elemental analysis and UV-Visible...
متن کاملAcid azo dyes for efficient molecular photovoltaic: study of dye-sensitized solar cells performance
In this paper we sensitized three free-metal azo days Dye 1, Dye 2 and Dye 3 based on 1,8-naphthalimide with n-propyl as the electron donor group. We used sulfonic acid and hydroxyl substituents as the electron acceptor anchoring group in synthesized dyes. The proposed dyes were sensitized from acenaphthene as the starting material by standard reactions and characterized by different techniques...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 8 شماره
صفحات -
تاریخ انتشار 2012